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ABSTRACT

Theories of turbulent time correlations are applied to compute frequency spectra of sound

radiated by isotropic turbulence and by turbulent shear 
ows. The hypothesis that Eule-

rian time correlations are dominated by the sweeping action of the most energetic scales

implies that the frequency spectrum of the sound radiated by isotropic turbulence scales

as !4 for low frequencies and as !�4=3 for high frequencies. The sweeping hypothesis is

applied to an approximate theory of jet noise. The high frequency noise again scales as

!�4=3, but the low frequency spectrum scales as !2. In comparison, a classical theory of jet

noise based on dimensional analysis gives !�2 and !2 scaling for these frequency ranges. It

is shown that the !�2 scaling is obtained by simplifying the description of turbulent time

correlations. An approximate theory of the e�ect of shear on turbulent time correlations is

developed and applied to the frequency spectrum of sound radiated by shear turbulence.

The predicted steepening of the shear dominated spectrum appears to be consistent with

jet noise measurements.
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I. Introduction

The nature of sound radiation by turbulent 
ow depends on properties of turbulent

time correlations. For even if the energy contained in motions of any given spatial scale is

known, say from the Kolmogorov theory, these motions will radiate sound at a frequency

proportional to their inverse correlation time; this dependence evidently determines the

frequency distribution of acoustic energy.

The present work applies theories of turbulent time correlations1�5 to compute fre-

quency spectra of sound radiated by isotropic turbulence and by shear turbulence. A

question which must be answered at the outset is whether Eulerian or Lagrangian time

correlations are required by this calculation. In the usual picture6 of quadrupole sound

sources, sound radiates from every point in an incompressible 
ow �eld because in�nitesi-

mal regions surrounding each point change shape without changing volume. In this picture,

it is the Eulerian time correlations which are relevant. A calculation which treats mov-

ing 
uid particles as acoustic sources must consider the random Doppler shift due to the

motion.

Analyses of sound radiation by stationary turbulence have often assumed7;8 that the

space and time variables in the space-time correlation function are separable. Thus, for

homogeneous turbulence,

< vi(x; t)vi(x+ r; s) > = F (r)R(�=��) (1)

where � = t � s denotes time di�erence and � � denotes an integral time scale. But the

temporal part of the space-time correlation function is scale dependent and Eq. (1) should

be replaced by

< vi(x; t)vi(x+ r; s) > = F (r)R(r; � ) (2)

where

R(r; 0) � 1 (3)

The goal of this paper is to assess the implications of using the more realistic model Eq. (2)

in noise calculations. While it may be possible to compute single time quantities including

the total acoustic power using a simpli�ed formula such as Eq. (1), accurate prediction of

two-time quantities like the acoustic power spectrum cannot be expected in general.
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The speci�c form of Eq. (2) applied here is determined by the sweeping hypothesis for

Eulerian time correlations,1;3;4 which is described in more detail in Sect. II. Our previous

work9 applied this hypothesis to the calculation of the total acoustic power radiated by

isotropic turbulence. In this idealized problem, the power spectrum is shown to scale as

!�4=3 for large frequencies and as !4 for small frequencies. Some numerical simulation

data consistent with these scalings are described by Lilley.10

To demonstrate the importance of time correlations in predicting acoustic radiation

from inhomogeneous 
ow, the classical theory of jet noise11;12 is evaluated using Eqs. (2)

and (3). This theory applies the Lighthill formula for far-�eld sound radiation, and as-

sumes isotropic turbulence statistics. Although this theory is highly simpli�ed, it provides

a convenient way to compare the consequences of di�erent theories of turbulent time corre-

lations. The high frequency acoustic power is found to scale as !�4=3, like isotropic turbu-

lence, but the low frequency spectrum scales as !2. In contrast, dimensional arguments12

lead instead to !2 scaling for low frequencies, and !�2 scaling for high frequencies. It is

shown that these scalings are recovered if the space-time correlation function is given the

separated form postulated in Eq. (1). The di�erence in predicted scalings demonstrates

the role of time correlations in acoustic analysis.

Although there is some experimental evidence that noise spectra measured at 90

degrees from the jet axis, for which this type of theory is most accurate, decay somewhat

more slowly than !�2 at high frequencies insofar as they exhibit power law scaling at

all, these comparison with jet noise data are inconclusive. Quantitative predictions will

depend on the numerical integration of the linearized Euler equations13 with the present

theory used to characterize the sound source.

Finally, we attempt to evaluate the power spectrum of sound radiated by shear tur-

bulence. The concern of this analysis is not the so-called \shear noise,"7 which is a global

property of the mean 
ow, but the corrections to the acoustic frequency spectrum due to

modi�cations by shear of the space-time correlation function. In contrast, the standard

theory7 does not consider these e�ects, but emphasizes instead the e�ects of shear on the

directivity pattern of acoustic radiation.

Since time correlations in shear turbulence do not seem to have been investigated

previously, they are computed using Leslie's perturbation theory14 for the direct interaction
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approximation for shear turbulence.15 As in Leslie's calculation, the acoustic spectrum

is expressed as an expansion in powers of the mean velocity gradient. A consequence

of the two-time properties of turbulence is that the radiated sound can depend on the

antisymmetric part of the mean velocity gradient alone, unlike the Reynolds stress, for

which such dependence is ruled out by general invariance arguments.16 Thus, it may not

be possible to characterize sound radiation by the Reynolds stress tensor. If the shear

dominated noise is produced primarily by the near exit region of a jet, its frequency

spectrum will scale as !�10=3. This prediction compares reasonably well with a recent

summary17 of jet noise data.

II. General properties of acoustic frequency spectra

According to the Lighthill theory,6 the frequency spectrum of sound radiated by ho-

mogeneous turbulence can be written as

p(!) = �ijklIijkl(!) (4)

In Eq. (4), � is Ribner's7 geometric factor

�ijkl =
X

xixjxkxlx
�4

where the vector xi connects the source and observation point, and
P

denotes symmetriza-

tion by summation or integration over source points symmetric with respect to the statis-

tical symmetries of the turbulence. The dynamic factor I is

Iijkl(!) =
!4

16�2c5

Z
dp [Qik(p; !) �Qjl(�p; !) +Qil(p; !) �Qjk(�p; !)] (5)

where � denotes convolution with respect to ! and Qij(p; !) is the two-time correlation

function de�ned by

< vi(p; !)vj(p
0; !0) > = Qij (p; !)�(! + !0)�(p + p0)

Angular dependence of p in Eq. (4) arises from angular dependence of both � and Qij .

Eqs. (4) and (5) are formulas for the acoustic power spectrum per unit mass of 
uid;

accordingly, the mass density �0 of the 
uid does not appear.
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We recall the arguments which lead to Eqs. (4) and (5). The starting point is

Lighthill's inhomogeneous wave equation. The solution of this equation is an integral

containing space derivatives of time-retarded velocities. The dominant terms in the solu-

tion are identi�ed as the space derivatives of the time-retarded quantities. These space

derivatives are equal to time derivatives, which for time stationary conditions contribute

the factor !4 in Eq. (5).

This argument leads to a fourth order velocity correlation; another approximation

made in arriving at Eq. (5) is that the familiar quasinormal closure hypothesis is applied

to close this correlation. An alternative to quasinormality which could potentially alter the

sound pressure levels is considered in Ref. 18, but the corrections computed are very small.

Another alternative which could alter the frequency scaling of aerodynamically generated

sound is anomalous scaling of pressure correlations.19 At this time, the occurrence of such

anomalous scaling remains conjectural.

A simpli�ed theory of sound radiation from shear 
ows results from a straightforward

generalization11 of Eq. (4) to inhomogeneous turbulence,

p(!) =

Z
dy �ijklIijkl(!;y) (6)

where y denotes position in 
ow �eld and the integration is over the 
ow region. In this

case, Eq. (5) is generalized to

Iijkl(!;y) =
!4

16�2c5

Z
dp

[Qik(p;y; !) �Qjl(�p;y; !) +Qil(p;y; !) �Qjk(�p;y; !)] (7)

Since Eqs. (6) and (7) ignore 
ow-acoustic interaction,13 their predictive capability is

limited. These formulas will be used to compare the consequences of di�erent theories

of turbulent time correlations on noise spectrum predictions, not to obtain quantitative

predictions.

III. Frequency spectrum of sound radiated by isotropic turbulence

For isotropic turbulence, Ribner's factor is

�ijkl = �ij�kl + �ik�jl + �il�kj (8)
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The space-time correlation function of stationary, homogeneous, isotropic turbulence has

the form

Q
(0)

ij
(p; !) = Q(0)(p)Pij (p)

Z 1

�1

d� R(0)(p; � )ei!� (9)

where

Pij(p) = �ij � pipjp
�2

The superscript (0) is used in Eq. (9) and subsequently to identify isotropic quantities.

The single time correlation function

4�k2Q(0)(p) = E(p) �

�
"2=3p�5=3 for p > k0
E0(p) for p < k0

(10)

exhibits Kolmogorov scaling for p > k0; k0 is the inverse integral scale which character-

izes the beginning of the inertial range. The far infrared spectrum E0 is included for

completeness; however, it will not in
uence the frequency scaling of the acoustic power

spectrum.

The time correlation function R(0) has an inertial range similarity form

R(0)(p; � ) = R(0)(��(p)) (11)

where the functional form of �(p) is determined by the temporal decorrelation mechanism.

For the sweeping hypothesis for Eulerian time correlations,1;3;4

�(p) = CDV p (12)

where the sweeping velocity V in Eq. (12) is a property of the most energetic scales

of motion. Thus, under the sweeping hypothesis, temporal decorrelation has a nonlocal

character since it is determined for motions of any given scale by motions of possibly much

larger scale. It is therefore possible that whatever contribution the most energetic scales

may make to the total acoustic power, they always determine the frequency distribution

of acoustic energy through their e�ect on the temporal decorrelation of the inertial range

scales. In free shear 
ows, it is very likely that the sweeping velocity is a property of

large-scale coherent structures. In this case, the sweeping velocity will not be predicted by

turbulence models, which compute either inertial range or mean 
ow quantities.
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Substituting Eqs. (8)-(12) in Eq. (5) yields

p(!) =
!4

16�2c5
G

Z
1

0

4�p2dp
E(p)2

(4�p2)2

Z
1

�1

d� R(0)(�(p)� )2ei!�

=
!4

64�3c5
G

Z 1

0

dp
E(p)2

p2
R̂(0)(!=�(p))�(p)�1 (13)

where the second equality de�nes R̂(0) and G is the geometric factor

G = �ijkl

I
dS(k)

�
Pik(k)Pjl(k) + Pil(k)Pjk(k)

�
= 64�

Since Z 1

�1

d� R(0)(p; � )2 = R <1

the limit of Eq. (13) for small ! gives for the sweeping hypothesis,

p(!) =
R!4

�2c5

Z
1

0

dp
E(p)2

p2
1

V p

This result expresses p as a functional of the exact energy spectrum E(p). A simple

approximation is obtained by substituting the cuto� Kolmogorov spectrum, Eq. (10) with

E0 � 0:

p(!) =
3

16
R
C2

K

�2
!4

c5V
"4=3k

�16=3

0
(14)

For large !, introduce the change of variables � = �(p)=! in Eq. (13) to obtain

p(!) =
!4

�2c5
R

Z 1

0

!

V
d�

E(!�=V )2

(!�=V )2
R̂(0)(1=�)

� "4=3V 13=3c�5!�4=3 (15)

where the Kolmogorov spectrum for p > k0 from Eq. (10) is again substituted for E(p).

Summarizing the results of Eqs. (14) and (15),

p(!) �
�"

c5

�
k
�16=3

0
V �1"4=3!4 for ! � 0

"1=3V 13=3!�4=3 for ! > V k0
(16)

In this calculation, the acoustic power radiated by inertial range scales is determined

through nonlocal sweeping e�ects by the sweeping velocity V , which is characteristic of

the most energetic scales. The peak acoustic power occurs at a frequency ! � V k0. Some

preliminary evidence supporting the -4/3 scaling is given by Lilley10.
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It is useful to compare the scalings of Eq. (16) with the scalings which would result

from the hypothetical relation

� � p� (17)

with � 6= 1. An example is the straining hypothesis for Eulerian time correlations,1;4 for

which � = 2=3. A simple calculation shows that for high frequencies

p(!) � !�; � = 4� (
13

3
+ �)��1 (18)

In particular, for the straining hypothesis, p � !�7=2. For any � < 1, the high frequency

spectrum predicted by Eq. (18) is steeper than the high frequency spectrum predicted by

Eq. (16). This result can be understood in terms of the properties of time correlations:

Eq. (12) shows that the correlation time of a given small scale, for which p >> 1 in

suitable units, is shorter under the sweeping hypothesis than under Eq. (17) with � < 1;

therefore, the sweeping hypothesis predicts that any given small scale radiates sound at

a higher frequency. This places more acoustic energy in higher frequencies and therefore

makes the spectrum more shallow.

IV. Approximate theory of jet noise

In this section, the approximate scaling theory of jet noise11;12 will be modi�ed by

introducing the time correlation function de�ned by Eqs. (11) and (12). In this theory, the

sound radiated by an inhomogeneous 
ow is given by Eq. (7) in which all quantities are

functions of position. The calculation will assume that the turbulence is locally isotropic.

We also use the result11 that the mean motion causes a Doppler shift of the acoustic

spectrum as a whole, but does not alter the frequency scaling of the spectrum.

The theory uses similarity solutions to describe the 
ow �eld and suppresses all vari-

ation in cross-stream planes by averaging. Thus, all 
ow variables f(x; y; z) are replaced

by average values

�f (y) =
1

A(y)

Z
dxdz f(x; y; z)

where A(y) denotes the jet area at downstream distance y. The theory further assumes

that there are two similarity regimes for a jet: the exit and the fully developed region. To

simplify the notation, these regions will be taken to extend over 0 � y � L and L � y <1

respectively where y is the axial coordinate; the transition region between these similarity
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regimes will be ignored. L can be assumed to equal about 6:0D where D denotes the exit

diameter of the jet.

A. The fully developed region

The classical similarity assumption for a fully developed jet is that the total momen-

tum 
ux

M = �

Z
dxdz U(x; y; z)2

is constant downstream and that all cross-sectional averages scale with M and y only. In

terms of the exit velocity U and diameter D,

M� U2D2 (19)

In particular, this hypothesis gives the well-known scaling for average velocity

�U(y) �M1=2y�1

and also determines the downstream variation of cross-section averages of turbulence quan-

tities; thus,

�"(y) �M3=2y�4 (20)

It follows from Eq. (20) that the cross-section averaged spectrum satis�es

�Q(0)(k; y) �My�8=3k�11=3 (21)

In Eqs. (20) and (21), � denotes equality up to a universal constant; all dimensional

parameters appear on the right hand side. In principle, these constants can be found from

measurements.

Denote by k0(y) the integral scale at downstream location y. Then evidently, k0(y) =

�=y where � is a universal constant proportional to the inverse spread rate of the jet. The

total energy is found by integrating Eq. (21) over all k � �=y and leads to

�K(y) �My�2

Introduce following Lilley11

p(y; !) =

Z
dxdz p(!; x; y; z) = A(y)�p(y; !)
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Under the sweeping hypothesis, the cross-section average of the frequency convolution in

Eq. (7) has the similarity form

1

A(y)

Z
dxdz R(0)(!=V p) �R(0)(!=V p) =

1

V (y)p
F (

!y

M1=2p
) �

y

M1=2p
F (

!y

M1=2p
) (22)

The subsitution of either an eddy turnover time like �K=�" or the inverse mean strain rate

for the sweeping velocity will alter the proportionality constant in Eq. (22). It is likely that

use of either of these time scales in calculations will require adjustment of this constant

for each application.

Now substitute the results of Eqs. (21) and (22) in Eq. (7), then integrate over

wavenumber p from �=y to 1. The result of this calculation is

p(y; !) � c�5!4M3=2y�7=3
Z
1

�=y

dp p�19=3F (
!y

M1=2p
)

= c�5!�4=3M25=6y�23=3G(
!y2

M1=2
) (23)

In Eq. (23), G is de�ned by

G(
!y2

M1=2
) =

Z !y
2
M
�1=2

�
�1

0

d� �13=3F (�)

Note that by integrating over !, we obtain
Z 1

�1

d! p(y; !) � c�5M25=6y�23=3(y2M�1=2)�1=3 � c�5M4y�7

which is the y�7 law for power radiated by each cross-section.12

For small arguments,

G(!y2M�1=2) � (!y2M�1=2)16=3 (24)

For large arguments, if F decays exponentially or faster at in�nity, then

G(!y2M�1=2) � constant (25)

The power spectrum p(!) is evaluated by integrating Eq. (23) with respect to y; since the

integral converges at y =1, it can be extended to 1 for analytical convenience, and the

result is

p(!) � c�5!�4=3M25=6

Z 1

L

dy y�23=3G(
!y2

M1=2
) (26)
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In view of Eq. (25), this integral converges in the limit !!1; therefore, in this limit

p(!) � !�4=3M25=6L�20=3 (27)

To evaluate the limit of Eq. (26) when ! is small, it is convenient to introduce the

change of variable �2 = !y2M�1=2. The result is

p(!) � c�5!2M5=2

Z
1

!1=2LM�1=4

d� G(�2)��23=3

In view of Eq. (24), G(�2) � �32=3 for small �, therefore, this integral converges for small

arguments and when ! ! 0,

p(!) � !2M5=2 (28)

Summarizing Eqs. (27) and (28)

p(!) � c�5
�
U5D5!2 ! � 0
U25=3D5=3!�4=3 ! �1

(29)

where Eq. (19) has been substituted in Eqs. (27) and (28) and the result L � D is used

to eliminate L.

B. The exit region

The exit region of a jet has the scaling properties of an axisymmetric mixing layer:

there is a constant velocity scale, and the area of the mixing region increases linearly

downstream. Thus,

�U(y) � y0 (30)

A(y) =

Z
dxdz � yD (31)

Then the scalings of Eqs. (20) and (21) are replaced by

�" � U3y�1 (32)

�Q(0)(p; y) � U2y�2=3p�11=3 (33)

and
1

A(y)

Z
dxdz R(0)(!=V p) �R(0)(!=V p) �

1

Up
F (

!

Up
) (34)
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Substituting Eqs. (30)-(34) in Eq. (7),

p(y; !) � !�4=3c�5y�1=3U25=3DH(!yU�1) (35)

where

H(!y=U) =

Z !y=U

0

d� �13=3F (�) (36)

Integrating Eq. (35) over ! leads to

Z
d! p(y; !) � y�1=3U25=3D(yU�1)1=3 � U8D

which is consistent with the y0 law for power contributed by each downstream section.12

Integrating Eq. (35) with respect to y,

p(!) � D!�2U9c�5
Z !L=U

0

d� ��1=3H(�) (37)

In view of Eq. (36), H(�) is constant in the limit � ! 1. The integral in Eq. (37)

therefore diverges as �2=3 for large arguments; accordingly, for ! !1

p(!) � !�2c�5U9D(!L=U)2=3 � !�4=3U25=3D5=3 (38)

Note that the divergence in
uences the scaling exponent, which therefore cannot be ob-

tained by dimensional analysis alone. For small arguments, H(�) � �16=3, therefore at low

frequencies,

p(!) � D!�2U9(!L=U)6 = !4U3DL6 (39)

Summarizing the results of Eqs. (38) and (39),

p(!) � c�5
�
U3D7!4 ! � 0
U25=3D5=3!�4=3 ! �1

(40)

Comparing Eqs. (40) and (29), it is evident that the !2 contributed by the fully developed

region is dominant at low frequencies. Combining the contributions from the exit and fully

developed regions,

p(!) � c�5
�
U5D5!2 ! � 0
U25=3D5=3!�4=3 ! �1

(41)

The conclusion that the fully developed region dominates the low frequency regime will

be seen to agree with the classical theory of jet noise. But unlike the classical theory, the
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high frequency region in Eq. (41) contains inertial range contributions from both the fully

developed and the exit regions of the jet.

V. Comparison with the classical theory of jet noise

An elementary scaling theory of jet noise12 results from the additional hypothesis that

each cross-section of the jet emits sound at one dominant frequency. Dimensional analysis

based on the scaling laws Eqs. (19) and (30)-(31) at once implies that the contribution of

the exit region to the acoustic frequency spectrum scales as !�2 and that the contribution

of the fully developed region scales as !2; analysis of Lighthill's integrals as in Sect. IV is

not required. These are the well-known +2 and -2 scaling laws.

A re�nement of this analysis is due to Lilley,11 who argues that although the contri-

bution to the frequency spectrum from each cross-section extends over a �nite range of

frequencies, the observed spectrum is the envelope of these contributions, and again scales

as !�2.

These results will be rederived by suitably simplifying the time correlation functions.

This calculation based on Lighthill's integrals will also provide a slight re�nement since it

provides formulas valid for all frequencies; it will be possible to show explicitly that the

contribution of the fully developed region is vanishingly small for large ! and that the

contribution of the exit region scales as !4 for small !.

The fundamental idea of the classical theory can be incorporated in the present anal-

ysis by suppressing the wavenumber dependence of the time correlation functions; thus,

Eq. (22) for the fully developed region is replaced by

1

A(y)

Z
dxdz R(0)(!=V p) �R(0)(!=V p) =

y2

M1=2
F (

!y2

M1=2
) (41)

and Eq. (34) for the exit region is replaced by

1

A(y)

Z
dxdz R(0)(!=V p) �R(0)(!=V p) =

y

U
F (

!y

U
) (42)

Thus, we e�ectively assume the separation of variables form Eq. (1) for the space time

correlation function.

Repeating the calculation leading to Eq. (23),

p(!; y) � !4c�5M3=2y�4=3
Z
1

1=y

p�16=3F (!y2M�1=2)

= !4c�5M3=2y3F (!y2M�1=2) (43)
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Integrating Eq. (43) over y leads to

p(!) � !4c�5M3=2

Z 1

L

dy y3F (!y2M�1=2)

=M5=2!2
Z 1

!L2M�1=2

d� �F (�) (44)

The integral in Eq. (44) converges when ! = 0; accordingly, for small !,

p(!) � !2 (45)

in agreement with the "+2" law. For large !, assuming rapid decay of the time correlation

function F for large arguments, instead

p(!) � 0 (46)

.

In the near exit region, Eq. (42) leads to

p(!; y) � !4c�5U3y5DF (!y=U) (47)

Integrating Eq. (47) over y,

p(!) = !4c�5U3D

Z
L

0

dy y5F (!y=U)

= !4c�5U3D(U=!)6
Z

!L=U

0

d� �5F (�) (48)

Again assuming su�ciently rapid decay of the time correlation function F at in�nity, the

integral converges as !!1 leading to

p(!) � U9D!�2 (49)

for large !, in agreement with the �2 law. For small !, the integral is of the order (!L=U)6;

consequently,

p(!) � !4 (50)

for small !. Combining Eqs. (45), (46), (49), and (50), we recover the classical scalings

p(!) �

�
!2 ! � 0
!�2 ! �1

(51)
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VI. Frequency spectrum of sound radiated by shear turbulence

This section investigates the e�ects of shear on turbulent time correlations and the

consequences of these e�ects for the acoustic power spectrum. The emphasis on time

correlation e�ects should be stressed; previous investigations of sound radiation from shear

turbulence have analyzed instead the e�ects of shear on directivity patterns, whether these

e�ects are due to local anisotropy,21 or due to mean 
ow e�ects.7

The e�ects of shear on time correlations will be evaluated by applying Leslie's per-

turbative theory of shear turbulence.14 In this theory, the shear is treated as a formally

small perturbation of a background state of isotropic turbulence; one can compare also the

two-scale theory of Yoshizawa.22 The result of the analysis is a perturbation series of the

form

Qij(k; t; s) = Q
(0)

ij
(k; t; s) +Q

(1)

ij
(k; t; s) +Q

(2)

ij
(k; t; s) � � � (52)

where Q(p) is of order p in the mean velocity gradient. The single time correlation was

computed to �rst order by Leslie;14 for the corresponding calculation to second order, see

Ref. 23. Corresponding to Eq. (52) is the series for the acoustic spectrum

p(!) = p(0)(!) + p(1)(!) + p(2)(!) + � � �

where p(0)(!) is the spectrum of isotropic turbulence.

Substituting the perturbation series Eq. (52) in the expression for acoustic radiation,

p(1)(!) =
!4

16�2c5
�ijkl

Z
dp

Z 1

�1

d� ei!��

�
Q
(1)

ik
(p; � )Q

(0)

jl
(�p; � ) +Q

(1)

il
(p; � )Q

(0)

jk
(�p; � )

+Q
(0)

ik
(p; � )Q

(1)

jl
(�p; � ) +Q

(0)

il
(p; � )Q

(1)

jk
(�p; � )

	
(53)

The index symmetry of Ribner's factor implies that Eq. (53) can be rewritten as

p(1)(!) =
!4

16�2c5
�ijkl

Z
dp

Z 1

�1

d� ei!�
1

6

X
(ijkl)

Q
(1)

ik
(p; � )Q

(0)

jl
(�p; � )

where
P

(ijkl)
denotes summation over all index permutations. The factor of 1/6 arises

from the four terms in Eq. (53) and the 24 permutations in
P

(ijkl)
. By substituting the

14



expression for Q
(1)

ij
(p; � ) from the Appendix, a simple calculation shows that

X
(ijkl)

I
dS(p) Q

(1)

ik
(p; � )Q

(0)

jl
(p; � )

= �
32

15
[R+(p; � ) +R�(p;�� )]R(0)(� )Q(p)2

X
(ijkl)

Sij�kl (54)

The time correlation functions R+ and R� in Eq. (54) are de�ned in the Appendix.

Assuming forms for the time correlation functions R(0); R+; R� consistent with the

sweeping hypothesis leads to

p(1)(!) � I1(Sij)c
�5"4=3V 13=3!�7=3 (55)

where

I1(Sij) = �ijkl

X
(ijkl)

Sij�kl

is a linear invariant of the rate of strain tensor, invariance being understood with respect

to the statistical symmetries of the 
ow.

The perturbation series can be continued in principle to higher order terms in the mean

velocity gradient. Because the results are very lengthy, let us attempt to generalize Eq. (55)

heuristically. It is noted in the Appendix that whereas the single time correlation function

Q
(1)

ij
(k; t; t) can only depend on the symmetric part Sij of the mean velocity gradient, the

two time quantity Q
(1)

ij
(k; t; s) depends in general both on Sij and the antisymmetric part

Wij =
1

2
(
@Ui

@xj
�
@Uj

@xi
)

Although the index symmetry of Ribner's factor �ijkl prevents dependence of p(1)(!)

on Wij , p
(2)(!) certainly can depend on both isotropic invariants SijSij and WijWij .

Dependence of the Reynolds stress itself on WijWij can be ruled out on general invari-

ance grounds.16 Thus, it is possible that acoustic radiation by shear turbulence cannot be

parametrized in terms of the Reynolds stress. From the viewpoint of this paper, such de-

pendence would be problematic in any case since the Reynolds stresses are not associated

with any temporal decorrelation mechanism. We conclude that

p(2)(!) � I2(Sij ;Wij )!
�10=3 (56)
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The approximate calculation of jet noise of Sect. IV can be repeated using the second

order perturbation series Eq. (52) to describe the sound source. Like the result for isotropic

turbulence statistics, the results to �rst and second order will coincide with Eqs. (55) and

(56). A turbulent jet has the symmetry type of axisymmetric shear 
ow in which Sij is of

the form 2
4S11 S12 0

S12 S22 S23
0 S23 S11

3
5 (57)

so that 2S11 + S22 = 0. The largest velocity gradient in a turbulent jet is the shear

@U2=@x1 in the near exit region. If this term dominates noise production, then in view of

the structure of Eq. (57), I1(Sij) � S22 � 0 but I2(Sij) � S2

12
and the shear contribution

to the acoustic power spectrum will be given by Eq. (56) with !�10=3 scaling.

These results for the spectra of sound radiated by isotropic turbulence and by shear

turbulence combine to determine the complete pattern of acoustic radiation through the

known directivities7 of sound radiated by isotropic and axisymmetric turbulence. At 90

degrees to the jet axis, the shear contribution is entirely suppressed, and only the isotropic

contribution, which scales theoretically as !�4=3, should be observed. The e�ect of shear

is greatest for nearly on-axis measurements; acoustic spectra measured in these directions

should scale as !�10=3. This very simple description of jet noise spectra is qualitatively

consistent with the comprehensive survey of jet noise data of Tam et al,17 who �nd that

nearly on-axis spectra scale as !�� with � � 2:8. Unlike the 90 degree spectra, the nearly

on-axis spectra exhibit unambiguous power law scaling. Of course, this comparison is

only qualitative; more precise comparisons will depend on numerical simulations now in

progress in which the present theory is used to characterize the sound sources.

We stress that in this account of jet noise, the \two components of turbulent mixing

noise" described by Tam et al are consequences of the isotropic and strain dependent parts

of the space-time correlation function of shear turbulence. To this extent, our theory

remains a quadrupole theory, although coherent structures, which are prominent in the

theory developed by Tam et al, enter crucially as the mechanism of temporal decorrelation.

We propose that the failures of quadrupole theories described by Tam et al might be

attributed not to inadequacies of these theories as such, but to the incorrect treatment of

turbulent time correlations with which they have been applied.
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VII. Conclusions

Proper parametrization of turbulent time correlations is crucial to calculation of power

spectra of acoustic radiation from turbulent 
ows. The present suggestion, based on the

sweeping hypothesis for Eulerian time correlations has been applied to the simpli�ed clas-

sical theory of jet noise.

This theory could be incorporated in computer simulations in two ways. First, it

permits stochastic synthesis of noise sources for linearized Euler calculations.24 A sec-

ond possibility is to incorporate these models in large eddy simulations as noise sources

corresponding to the subgrid scales.

Finally, we note that our results favor the computational characterization of noise

sources by methods capable of capturing the properties of coherent 
ow structures like

large eddy simulation because the sweeping velocity depends on coherent 
ow structures.

Appendix. Leslie's theory of shear turbulence

We summarize the application of Leslie's perturbation theory of shear turbulence to

the two time correlation function in shear turbulence.

We will consider a time stationary shear turbulence. This requires that energy be

removed from large scales by some external agency; otherwise, as Kraichnan predicted14

and experiments25 later con�rmed, the shear will continually create new scales; in the log

layer, the external agency is turbulent di�usion.

Write the equation for velocity 
uctuations in shear turbulence as

@

@t
ui(k; t) = �

i

2
Pimn(k)

Z
k=p+q

dpdq um(p; t)un(q; t) + Sim(k; t)um(k; t) (58)

where
Pimn = kmPin(k) + knPin(k)

Pij(k) = �ij � kikjk
�2

and the mean shear operator is

Sim(t) = �
@Ui

@xm
(t) + 2k�2kikp

@Up

@xm
(t) + �imks

@Us

@xr
(t)

@

@kr

Leslie writes the solution of Eq. (58) as a perturbation series

ui(k; t) = u
(0)

i
(k; t) + u(1)(k; t) + � � �
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where u(n) is of order n in the strain rate and the zero order �eld is isotropic turbulence.

Leslie's analysis assumes that the response function1;14;15 G(0) of isotropic turbulence is

known. If the shear is treated as a perturbation, then properties of the response function

imply that the �rst order velocity �eld is

u
(1)

i
(k; t) =

Z
t

0

ds G(0)(k; t; s) Sim (k; s) u(0)
m

(k; s) (59)

The two time correlation function in weakly sheared turbulence can be evaluated from

Eq. (59). To �rst order,

Q
(1)

ij
(k; t; s)�(k + k0) = < u

(1)

i
(k; t)u

(0)

j
(k0; s) + u

(0)

i
(k; t)u

(1)

j
(k0; s) >

Then

Q
(1)

ij
(k; t; s) = P

(1)

ij
(k; t; s) + �

(1)

ij
(k; t; s) + T

(1)

ij
(k; t; s) (60)

where

P
(1)

ij
(k; t; s) = �

Z
t

0

dr G(k; t; r)
@Ui

@xm
Qmj(k; r; s) �

Z
s

0

dr G(k; s; r)
@Uj

@xm
Qmi(k; r; t)

�
(1)

ij
(k; t; s) = 2

Z t

0

dr G(k; t; r)kikpk
�2

@Up

@xm
Qmj (k; r; s)

+ 2

Z s

0

dr G(k; s; r)kjkpk
�2

@Up

@xm
Qmi(k; r; t)

T
(1)

ij
(k; t; s) =

Z t

0

dr G(k; t; r) < u
(0)

j
(�k; s)kp

@Up

@xr

@

@kr
u
(0)

i
(k; r) >

+

Z s

0

dr G(k; s; r) < u
(0)

i
(�k; t)kp

@Up

@xr

@

@kr
u
(0)

j
(k; r) >

The time stationary forms for P
(1)

ij
and �

(1)

ij
are

P
(1)

ij
(k; � ) = �R�(k; � )

@Ui

@xm
Q(k)Pmj (k) �R+(k; � )

@Uj

@xm
Q(k)Pmi(k) (61)

�
(1)

ij
(k; � ) = 2R�(k; � )

@Up

@xm
kikpk

�2Q(k)Pmj (k)

+ 2R+(k; � )
@Up

@xm
kjkpk

�2Q(k)Pmi(k) (62)

where

R�(k; � ) =

Z 1

0

dr G(k; r)R(0)(k; r � � )

R+(k; � ) =

Z 1

0

dr G(k; r)R(0)(k; r + � )
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where R(0) is the time correlation function of isotropic turbulence.

To evaluate correlations of the form T (1), de�ne

Aijr(k; t; s) = < ui(k; t)
@

@kr
uj(�k; s) >

so that

T
(1)

ij
(k; t; s) = �

Z
t

0

dr G(k; t; r)kp
@Up

@xr
Ajir(�k; s; r)

�

Z s

0

dr G(k; s; r)kp
@Up

@xr
Aijr(�k; t; r) (63)

Note the properties

kiAijr(k) = 0

kjAijr(k) = �Qir(k) = �Pir(k)Q(k)

Aijr(�k) = �Aijr(k)

Aijr(k) +Ajir(k) =
@

@kr
Qij(k) =

@

@kr
Pij(k)Q(k) (64)

and the general form, required by isotropy,

Aijr(k) = k�1A(k)�ijr + k�2B(k)ki�jr + k�2C(k)kj�ir

+ k�2D(k)kr�ij + k�4E(k)kikjkr (65)

It follows from substituting the general form Eq. (65) into the conditions Eq. (64) that

the functions A; � � �E are uniquely determined so that

< ui(k; t)
@

@kr
uj(�k; s) >=

�Q(k; t; s)k�2kjPir(k) +
1

2

d

dk
Q(k; t; s)k�1krPij(k) (66)

Substituting Eq. (66) in Eq. (63) and using Eqs. (60)-(62), we obtain the time stationary

result

Q
(1)

ij
(k; � ) = Q(k)f�R�(k; � )

@Ui

@xm
Pmj(k) �R+(k; � )

@Uj

@xm
Pmi(k)

+ 2R�(k; � )
@Up

@xm
kikpk

�2Pmj(k) + 2R+(k; � )
@Up

@xm
kjkpk

�2Pmi(k)

�R�(k; � )k�2kpkiPjr(k)
@Up

@xr
�R+(k; � )k�2kpkjPir(k)

@Up

@xr
g

+
1

2
[R̂�(k; � ) + R̂+(k; � )]k�1krkpPij(k)

@Up

@xr
(67)
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where

R̂�(k; � ) =

Z 1

0

dr G(k; r)
d

dk
Q(k; r � � )

R̂+(k; � ) =

Z 1

0

dr G(k; r)
d

dk
Q(k; r + � )

The symmetry properties of the result in Eq. (67) are interesting. Note the result of

spherical integration

I
dS(k) Q

(1)

ij
(k; � ) =�

1

10
Q(k)fR+(k; � ) +R�(k; � )gSij �

1

6
Q(k)fR̂+(k; � ) + R̂�(k; � )gSij

�
1

6
Q(k)fR̂+(k; � )� R̂�(k; � )gWij (68)

and the single time reduction

I
dS(k) Q

(1)

ij
(k) = �

1

5
Q(k)R+(k; 0)Sij �

1

3
Q(k)R̂+(k; 0)Sij

Thus, whereas the single time integrated correlation function depends only on Sij, a con-

sequence of index symmetries alone, the corresponding two time quantity depends on both

Sij and Wij . This dependence is possible because the odd parity of the function of time

di�erence which multiplies Wij in Eq. (68) insures the symmetry relation

Qij (k; � ) = Qji(k;�� )

satis�ed by the two-point two-time correlation function.
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